
An Introduction to the Linux Kernel Block I/O Stack
Based on Linux 5.11

Benjamin Block ‹bblock@de.ibm.com›
March 14th, 2021

IBM Deutschland Research & Development GmbH

Trademark Attribution Statement

The following are trademarks of the International Business Machines Corporation in the United States, other countries, or both.

Not all common lawmarks used by IBM are listed on this page. Because of the large number of products marketed by IBM, IBM’s practice is to list only the most important of its common lawmarks.
Failure of a mark to appear on this page does not mean that IBM does not use the mark nor does it mean that the product is not actively marketed or is not significant within its relevant market.

A current list of IBM trademarks is available on the Web at “Copyright and trademark information”: https://www.ibm.com/legal/copytrade.

IBM®, the IBM® logo, ibm.com®, AIX®, CICS®, Db2®, DB2®, developerWorks®, DS8000®, eServer™, Fiberlink®, FICON®, FlashCopy®, GDPS®, HyperSwap®, IBM Elastic Storage®, IBM FlashCore®, IBM
FlashSystem®, IBM Plex®, IBM Spectrum®, IBM Z®, IBM z Systems®, IBM z13®, IBM z13s®, IBM z14®, OS/390®, Parallel Sysplex®, Power®, POWER®, POWER8®, POWER9™, Power Architecture®,
PowerVM®, RACF®, RED BOOK®, Redbooks®, S390-Tools®, S/390®, Storwize®, System z®, System z9®, System z10®, System/390®, WebSphere®, XIV®, z Systems®, z9®, z13®, z13s®, z15™,
z/Architecture®, z/OS®, z/VM®, z/VSE®, and zPDT® are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies.

The following are trademarks or registered trademarks of other companies.

UNIX is a registered trademark of The Open Group in the United States and other countries.
The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.
Red Hat®, JBoss®, OpenShift®, Fedora®, Hibernate®, Ansible®, CloudForms®, RHCA®, RHCE®, RHCSA®, Ceph®, and Gluster® are trademarks or registered trademarks of Red Hat, Inc. or its
subsidiaries in the United States and other countries.

All other products may be trademarks or registered trademarks of their respective companies.

Note:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user
will experience will vary depending upon considerations such as the amount of multiprogramming in the user’s job stream, the I/O configuration, the storage configuration, and the workload
processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured Sync new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have
achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.
All statements regarding IBM’s future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained Sync the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the
performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

https://www.ibm.com/legal/copytrade

Outline

What is a Block Device?

Anatomy of a Block Device

I/O Flow in the Block Layer

What is a Block Device?

A Try at a Definition

In Linux, a Block Device is a hardware abstraction. It represents hardware whose data is
stored and accessed in fixed size blocks of n bytes (e.g. 512, 2048, or 4096 bytes) [18].

In contrast to Character Devices, blocks on block devices can be accessed in
random-access pattern, wherein the former only allows sequential access pattern [19].

Typically, and for this talk, block devices represent persistent mass storage hardware.

But not all block devices in Linux are backed by persistent storage (e.g. RAM Disks whose
data is stored in memory), nor must all of them organize their data in fixed blocks (e.g.
ECKD formatted DASDs whose data is stored in variable length records). Even so, they
can be represented as such in Linux, because of the abstraction provided by the Kernel.

© Copyright IBM Corp. 2021 2

What is a ‘Block’ Anyway?

A Block is a fixed amount of bytes that is used in the communication with a block device
and the associated hardware. But different layers in the software stack differ in the
exact meaning and size:

• Userspace Software: application specific meaning; usually how much data is read
from/written to files via a single system-call.

• VFS: unit of bytes in which I/O is done by file systems in Linux. Between 512, and
PAGE_SIZE bytes (e.g. 4KiB for x86 and s390x, may be as big as 1MiB).

• Hardware: also referred to as Sector.
• Logical: smallest unit in bytes that is addressable on the device.
• Physical: smallest unit in bytes that the device can operate on without resorting to
read-modify-write.

• Physical may be bigger than Logical block size

© Copyright IBM Corp. 2021 3

Using Block Devices in Linux (Examples)
Listing available block devices:
ls / sys / c lass / block
dasda dasda1 dasda2 dm−0 dm−1 dm−2 dm−3 scma sda sdb

Reading from a block device:
dd i f =/dev / sdf of =/dev / nu l l bs=2MiB
10737418240 bytes (11 GB, 10 GiB) copied

Listing the topology of a stacked block devices:
lsb lk −s /dev /mapper/ rhel_t3545003−root
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
rhel_t3545003−root 253:11 0 9G 0 lvm /
+−mpathf2 253:8 0 9G 0 part
+−mpathf 253:5 0 10G 0 mpath
+−sdf 8:80 0 10G 0 disk
+−sdam 66:96 0 10G 0 disk

© Copyright IBM Corp. 2021 4

Some More Examples for Block Devices

Kernel

/dev/nvme0n1

Local Disk

nvme

NVMe

Kernel

/dev/sda

Remote Disk

sd
iscsi_tcp

iSCSI

Guest Kernel

/dev/vda

Virtualized Disk

virtio_blk

/dev/ram0

Host Kernel
brd

RAM RAM
RAID

Figure 1: Examples for block device setups with different hardware backends [14].

© Copyright IBM Corp. 2021 5

Anatomy of a Block Device

Structure of a Block Device: User Facing

block_device Userspace interface;
represents special file in /dev, and
links to other kernel objects for the
block device [4, 16]; partitions point to
same disk and queue as whole device.

inode Each block device gets a virtual
inode assigned, so it can be used in the
VFS.

file and address_space Userspace
processes open special file in /dev; in
kernel represented as file with
assigned address_space that point
to block device inode.

request_queue

i_rdev = devt
i_mode = S_IFBLK

bd_queue
bd_disk

i_bdev

bd_partno = 1
bd_dev = devt
bd_start_sect = 32

i_size

block_device

inodeinode

i_rdev = devt
i_mode = S_IFBLK

block_device

bd_queue
bd_disk

i_bdev

bd_partno = 0
bd_dev = devt
bd_start_sect = 0

i_size

Kernel
User

/dev/sda /dev/sda1

gendisk

fi
le

ad
dr
es
s_
sp
ac
e

© Copyright IBM Corp. 2021 6

Structure of a Block Device: Hardware Facing

scsi_device
request_queue

request_queue

tag_set

limits

1

scsi_disk
disk queue_limits
gendisk

part_tbl
part0
queue

1

disk_part_tbl
len = N
part[len]

block_device
N

1

parent

queuedata
1

1

fops

block_device
_operations

*submit_bio(*bio)
*open(*bdev, mode)

1

queue_ctx[C]
queue_hw_ctx[N]

gendisk and request_queue Central
part of any block device; abstract
hardware details for higher layers;
gendisk represents the whole
addressable space; request_queue
how requests can be served

disk_part_tbl Points to partitions —
represented as block_devices —
backed by gendisk

scsi_device and scsi_disk Device
drivers; provides common/mid layer
for all SCSI-like hardware (incl. Serial
ATA, SAS, iSCSI, FCP, …).

© Copyright IBM Corp. 2021 7

Queue Limits

• Attached to the Request Queue structure of a Block device
• Abstract hardware, firmware and device driver properties that influence how
requests must be laid out

• Very important for stacked block devices
• For example:

logical_block_size Smallest possible unit in bytes that is addressable in a request.
physical_block_size Smallest unit in bytes handled without read-modify-write.
max_hw_sectors Amount of sectors (512 bytes) that a device can handle per request.

io_opt Preferred size in bytes for requests to the device.
max_sectors Softlimit used by VFS for buffered I/O (can be changed).
max_segment_size Maximum size a segment in a request’s scatter/gather list can

have.
max_segments Maximum amount of scatter/gather elements in a request.

© Copyright IBM Corp. 2021 8

Multi-Queue Request Queues

• In the past, request queues in Linux worked single threaded and without
associating requests with particular processors

• Couldn’t properly exploit many-core systems and new storage hardware with more
than one command queue (e.g.: NVMe); lots of cache thrashing

• Explicit Multi-Queue (MQ) support [3] was added with Linux 3.13: blk-mq
• I/O requests are scheduled on a hardware queue assigned to the I/O generating
processor; responses are meant to be received on the same processor

• Structures necessary for I/O submission and response-handling are kept per
processor; no shared state as much as possible

• With Linux 5.0 old single threaded queue implementation was removed

© Copyright IBM Corp. 2021 9

Block MQ Tag Set: Hardware Resource Allocation

• Per hardware queue resource
allocation and management

• Requests (Reqs) are pre-allocated per
HW queue (blk_mq_tags)

• Tags are index into the request array
per queue, or per tag set (new in 5.10
[17])

• Allocation of tags handled via special
data-structure: sbitmap [20]

• Tag set also provides mapping between
CPU and hardware queue; objective is
either 1 : 1mapping, or cache proximity

Tags[M]
Reqs[M]

N = 4

M = 8

HW Queues0 1 2 3

blk_mq
_tags

blk_mq
_tags

blk_mq
_tags

blk_mq
_tags

Tags[M]
Reqs[M]

blk_mq
_tag_set

tags[N]
map

Ctrl

0 0 1 1 2 2 3 3

C = 8
1 2 3 4 5 6 70

CPU IDs

Tags[M]
Reqs[M]

Tags[M]
Reqs[M]

© Copyright IBM Corp. 2021 10

Block MQ Soft- and Hardware-Context

• For a request queue (see pointers on
page 7)

• Hardware context (blk_mq_hw_ctx =
hctx) exists per hardware queue; hosts
work item (kblockd work queue)
scheduled on matching CPU; pulls
requests out of associated ctx and
submits them to hardware

• Software context (blk_mq_ctx = ctx)
exists per CPU; queues requests in
simple FIFO in absence of Elevator;
associated with assigned HCTX as per
tag set mapping

blk_mq
_hw_ctx

blk_mq
_hw_ctx

blk_mq
_hw_ctx

blk_mq
_hw_ctx

*work()
tags

*work() *work() *work()
tags tags tags

blk_mq
_tags

blk_mq
_tags

blk_mq
_tags

blk_mq
_tags

hctx

ctx ctx

hctx
6

rqL rqL

7
hctx

ctx ctx

hctx
4

rqL rqL

5
hctx

ctx ctx

hctx
2

rqL rqL

3
hctx

ctx ctx

hctx
0

rqL rqL

1

list of queued reqeusts

work
item

Core CPU NUMA Domain

0 1 2 3 4 5 6 7

scheduled
here

© Copyright IBM Corp. 2021 11

Block MQ Elevator / Scheduler

• Elevator = I/O Scheduler
• Can be set optionally per request queue
(/sys/class/block/<name>/queue/scheduler)

mq-deadline Forward port of old deadline scheduler; doesn’t handle MQ context
affinities; default for device with 1 hardware queue; limits wait-time for
requests to prevent starvation (500ms for reads, 5 s for writes) [10, 18]

kyber Only MQ native scheduler [10]; aims to meet certain latency targets (2ms
for reads, 10ms for writes) by limiting the queue-depth dynamically

bfq Only non-trivial I/O scheduler [6, 8, 9, 11] (replaces old CFQ scheduler);
doesn’t handle MQ context affinities; aims at providing fairness between
I/O issuing processes

none Default for device withmore than 1 hardware queue; simply FIFO via MQ
software context

© Copyright IBM Corp. 2021 12

What About Stacked Block Devices?

• Device-Mapper (dm) and Raid (md) use virtual/stacked block device on top of
existing hardware-backed block devices ([15, 21])

• Examples: RAID, LVM2, Multipathing

• Same structure as shown on page 6 and 7, without hardware specific structures,
stacked on other block_devices

• BIO based: doesn’t have an Elevator, an own tag-set, nor any soft-, or
hardware-contexts; modify I/O (BIO) after submission and immediately pass it on

• Request based: have full set of infrastructure (only dm-multipath atm.); can queue
requests; bypass lower-level queueing

• queue_limits of lower-level devices are aggregated into the “greatest common
divisor”, so that requests can be scheduled on any of them

• holders/slaves directories in sysfs show relationship

© Copyright IBM Corp. 2021 13

I/O Flow in the Block Layer

Submission of I/O Requests from Userspace (Simplified)

• I/O submission mainly categorized in 2
disciplines:

Buffered I/O Requests served via Page
Cache; Writes cached and eventually —
usually asynchronously — written to
disk viaWriteback; Reads served
directly if fresh, otherwise read from
disk synchronously

Direct I/O Requests served directly by
backing disk; alignment and possibly
size requirements; DMA directly
into/from User memory possible

• For syncronous I/O system calls, tasks
wait in state TASK_UNINTERRUPTIBLE

Kernel
User

File
systems

block_device
block_device

gendisk
fops

submit_bio(bio)

request_queue

queue

Page
Cache

Buffered I/O
Write

Direct I/O
Read ReadWrite

VFS

Writeback

Read(-ahead)

R W R W

Block
Layer

© Copyright IBM Corp. 2021 14

A New Asynchronous I/O Interface: io_uring

• With Linux 5.1 a new I/O submission API
has been added: io_uring [12, 2]

• New set of System Calls to create set of ring
structures: Submission Queue (SQ),
Completion Queue (CQ), and Submission
Queue Entries (SQE) array

• Structures shared between Kernel and User
via mmap(2)

• Submission and Completion work
asynchronously

• Utilizes standard syscall backends for calls
like readv(2), writev(2), or fsync(2);
with same categories as on Page 14

SQ
CQ

User
Kernel

0

1

2

3

4

5

6

7

SQE
CQE

Head
SQE
SQE 1

2

Ta
il

Tail Head

per id in CQE

Feed into existing
Syscall Paths

mmap structures into userspace
1. Fill

2. Advance
3. Advance

© Copyright IBM Corp. 2021 15

The I/O Unit of the Block Layer: BIO

bio_vec
bv_page

bv_len
bv_offset

bio_vec
bv_page

bv_len
bv_offset

bio

bi_io_vec[]

bi_next

bi_disk

*bi_end_io()
bi_iter bio_vec

bv_page
bv_len
bv_offset

bi_opf : req_opf

page

1 ... 256

bvec_iter
bi_sector
bi_size
bi_idx
bi_bvec_done

0 ... N

pagepage

Pages
Physically Contiguous

Pinned
Data Pages

bi_partno = N

1

Data/LBA
Contiguous

48656C
6C6F2C

20576F
726C64

210A00
48656C

6C6F2C
20576F

726C64
210A00

000000
000000

• BIOs represent in-flight I/O
• Application data kept separate; array of
bio_vecs holds pointers to pages with
application data (scatter/gather list)

• Position and progress managed in
bvec_iter:
bi_sector start sector

bi_size size in bytes
bi_idx current bvec index

bi_bvec_done finished work in bytes
• BIOs might be split when queue limits
(see page 8) exceeded; or cloned when
same data goes to different places

• Data of single BIO limited to 4GiB
© Copyright IBM Corp. 2021 16

Plugging and Merging

Plugging:

• When the VFS layer generates I/O requests and submits them for processing, it
plugs the request queue of the target block device ([1])

• Requests generated while plug is active are not immediately submitted, but saved
until unplugging

• Unplugging happens either explicitly, or during scheduled context switches

Merging:

• BIOs and requests are tried to be merged with already queued or plugged requests
Back-Merging: The new data fits to the end of an existing request
Front-Merging: The new data fits to the beginning of an existing request

• Merging is done by concatenating BIOs via bi_next
• Merges must not exceed queue limits

© Copyright IBM Corp. 2021 17

Entry Function into the Block Layer

submit_bio(bio) {

On Stack: bios, old_bios

if (exists(current.bios)) {
current.bios += bio
return

}

do {

On Stack: same, lower

old_bios ← current.bios
current.bios = List()
disk(bio)->submit_bio(bio)

if (q == queue(bio))
same += bio

else
lower += bio

current.bios += lower
current.bios += same
current.bios += old_bios

}

} while (bio = pop(current.bios))

return

lower = List()
same = List()

}

current.bios ← bios

current.bios ← Null

while (bio ← pop(current.bios)) {
On Stack: q = queue(bio)

thread local

• When I/O is necessary, BIOs are generated and
submitted into the block layer via submit_bio()
([4]).

• Doesn’t guarantee synchronous processing;
callback via bio->bi_end_io(bio).

• One submitted BIO can turn into several more
(block queue limits, stacked device, …); each is
also submitted via submit_bio().

• Especially for stacked devices this could exhaust
kernel stack space → turn recursion into iteration
(approx.: depth-first search with stack)

← Pseudo-code representation of functionality

© Copyright IBM Corp. 2021 18

Request Submission and Dispatch

• Once a BIO reaches a request queue (see Page 12
and 11) the submitting task tries to get Tag from
the associated HCTX

• Creates back pressure if not possible

• The BIO is added to the associated Request; via
linking, this could be multiple BIOs per request

• The Request is inserted into software context
FIFO queue, or Elevator (if enabled); the HCTX
work-item is queued into kblockd

• Associated CPU executes HCTX work-item
• Work-item pulls queued requests out of associated
software contexts or Elevators and hands them to
HW device driver

CPU 0
kblockd

Push using
HW Device Driver

HW Queue

H
CT

X

H
CT

X

H
CT

X

CTX

0

0 1

Pull
Preemptable

Kern
el T

hreads

Diffe
rent

Request
Queues

Ctrl

© Copyright IBM Corp. 2021 19

Request Completion

CPU 0

Ctrl

IRQ
Device Driver

IRQ Handler

Find Request

blk_mq_complete_req(rq)

q→mq_ops→complete(rq)
Queue Request

Completion
Redirect with
IPI/SoftIRQ

For each associated BIO

bio→bio_end_io(bio)

Notify
Waiter • Once a request is processed, device drivers usually get

notified via an interrupt
• To keep data CPU local, interrupts should be bound to
CPU of associated MQ software context
(platform-/controller-/driver-dependant)

• blk-mq resorts to IPI or SoftIRQ otherwise

• The device driver is responsible for determining the
corresponding block layer request for the signaled
completion

• Progress is measured by how many bytes were
successfully completed; might cause re-schedule

• Process of completing a request is a bunch of callbacks
to notify the waiting user-/kernel-thread

© Copyright IBM Corp. 2021 20

Block Layer Polling

• Similar to high speed networking, with high speed storage targets it can be
beneficial to use Polling instead of Waiting for Interrupts to handle request
completion

• Decreases response times and reduces overhead produced by interrupts on fast devices
• Available in Linux since 4.10 [7]; only supported by NVMe at this point (support for
SCSI merged for 5.13 [13], support for dm in work [26])

• Enable per request queue: echo 1 > /sys/class/block/<name>/queue/io_poll
• Enable for NVMe with module parameter: nvme.poll_queues=N

• Device driver creates separate HW queues that have interrupts disabled
• Whether polling is used is controlled by applications (only with Direct I/O currently):

• Pass RWF_HIPRI to readv(2)/writev(2)
• Pass IORING_SETUP_IOPOLL to io_uring_setup(2) for io_uring

• When used, application threads that issued I/O, or io_uring worker threads,
actively poll in HW queues whether the issued request has been completed

© Copyright IBM Corp. 2021 21

Closing

Summary

• Block devices are a hardware abstraction to allow uniform access to a range of
diverse hardware

• The entry into the block layer is provided by block_device device-nodes, which
are backed by a gendisk — representing the block-addressable storage space — ,
and a request_queue — providing a generic way to queue requests against the
hardware

• Special care is taken to allow processor local processing of I/O requests and
responses

• Userspace requests mainly categorized in Buffered and Direct I/O
• Central structure for transporting information about in-flight I/O is the BIO; it allows
for cloning, splitting and merging without copying payload

• Processing of I/O is fundamentally asynchronous in the kernel, requests happen in
a different context than responses, and are only synchronized via wait/notify
mechanisms

© Copyright IBM Corp. 2021 22

Made with LATEX and Inkscaper

Questions?

IBM Deutschland Research & Development

Headquarters Böblingen • Big parts of the support for Linux on IBM Z — Kernel
and Userland — are done at the IBM Laboratory in
Böblingen

• We follow a strict upstream policy and do not — with
scarce exceptions — ship code that is not accepted
in the respective upstream project

• Parts of the hard- and firmware for the IBM
Mainframes are also done in Böblingen

• https://www.ibm.com/de-de/marketing/entwicklung/

about.html

© Copyright IBM Corp. 2021 23

https://www.ibm.com/de-de/marketing/entwicklung/about.html
https://www.ibm.com/de-de/marketing/entwicklung/about.html

Backup Slides

But What About Zoned Storage?

• Introduced with the advent of SMR Disks, but now also in NVMe specification
• Tracks on the disk overlap; overwriting a single track means overwriting a bunch of
other tracks as well [24]

→ Data is organized in “bands” of tracks: zones. Each zone onlywritten sequentially;
out-of-order writes only after reset of whole zone. Random read access remains
possible.

• Supported by the Linux block layer, but breaks with previous definition
• Direct use only via aid by special ioctls [23], via special device-mapper target [22],
or via special file system [25]

• Gonna ignore this for the rest of the talk

© Copyright IBM Corp. 2021

Structure of a Block Device: Whole Picture

scsi_device
request_queue

request_queue
elevator
backing_dev_info
limits

1

scsi_disk
disk

elevator_queue0 ... 1

queue_limits1

gendisk

part_tbl
part0

queue

1

1

bdev_inode

vfs_inode
bdev

inode

i_rdev = devt
i_mode = S_IFBLK

block_device

bd_queue
bd_disk

1

1

i_bdev

1

bd_partno = N

scsi layer
block layer
(V)FS layer

bd_dev = devt

disk_part_tbl
len = O
part[len]

1

1

bd_start_sect = Mblock_device_operations
*submit_bio(*bio)
*open(*bdev, mode)

1

fops

O

© Copyright IBM Corp. 2021

Structure of a MQ Request Queue: Whole Picture

request_queue

elevator
backing_dev_info
limits

backing_dev_info1

queue_limits 1

Queue Context
Request Queue
Tag Set

mq_ops

queue_ctx[]
queue_hw_ctx[]

max_hw_sectors
max_sectors
max_segment_size
physical_block_size
logical_block_size
io_opt
max_segments

ra_pages
min_ratio
max_ratio
wb : bdi_writeback

blk_mq_ops
*queue_rq()
*complete()
*timeout()

elevator_queue
type
elevator_data

0 .. 1

tag_set

mq_deadline
ops

e.g.:
1

nr_hw_queues

blk_mq_tag_set
map[MAX_TYPES]
queue_depth
tags[nr_hw_queues]

blk_mq_queue_map
mq_map[nr_cpu_ids]

1 ... 3

blk_mq_tags
nr_tags = queue_depth
bitmap_tags : sbitmap
rqs[nr_tags]
static_rqs[nr_tags]

1 ... *

mq_map[x] = nr-hw-queue

pages : listblk_mq_ctx
rq_lists[MAX_TYPES] : list
cpu
hctx[MAX_TYPES]
queue

blk_mq_hw_ctx
dispatch : list
cpumask
nr_ctxs
ctx[nr_ctx]
ctx_map : sbitmap
tags
queue

1 ... *

1 1

per_cpu_ptr

1

1 ... 3

1 ... nr_hw_queues

page
requestdata[]

1 ... nr_tags

© Copyright IBM Corp. 2021

Glossary i

BIO BIO: represents metadata and data for I/O in the Linux block layer; no hardware specific information.

CFQ Completely Fair Queuing: deprecated I/O scheduler for single queue block layer.

DASD Direct-Access Storage Device: disk storage type used by IBM Z via FICON.

dm Device-Mapper: low level volume manager; allows to specify mappings for ranges of logical sectors; higher
level volume managers such as LVM2 use this driver.

DMA Direct Memory Access: hardware components can access main memory without CPU involvement.

ECKD Extended Count Key Data: a recording format of data stored on DASDs.

Elevator Synonym for “I/O Scheduler” in the Linux Kernel.

FCP Fibre Channel Protocol: transport for the SCSI command set over Fibre Channel networks.

FIFO First in, First out.

HCTX Hardware Context of a request queue.

ioctl input/output control: system call that allows to query device-specific information, or execute
device-specific operations.

© Copyright IBM Corp. 2021

Glossary ii

IPI Inter-Processor Interrupt: interrupt an other processor to communicate some required action.

iSCSI Internet SCSI: transport for the SCSI command set over TCP/IP.

LVM2 Logical Volume Manager: flexible methodes of allocating (non-linear) space on mass-storage devices.

md Multiple devices support: support multiple physical block devices through a single logical device; required
for RAID and logical volume management.

MQ Short for: Multi-Queue.

Multipathing Accessing one storage target via multiple independent paths with the purposes of redundancy and
load-balancing.

NVMe Non-Volatile Memory Express: interface for accessing persistent storage device over PCI Express.

RAID Redundant Array of Inexpensive Disks: combines multiple physical disks into a logical one with the
purposes of data redundancy and load-balancing.

RAM Random-Access Memory: a form of information storage, random-accessible, and normally volatile.

SAS Serial Attached SCSI: transport for the SCSI command set over a serial point-to-point bus.

© Copyright IBM Corp. 2021

Glossary iii

SCSI Small Computer System Interface: set of standards for commands, protocols, and physical interfaces to
connect computers with peripheral devices.

Serial ATA Serial AT Attachment: serial bus that connects host bus adapters with mass storage devices.

SMR Shingled Magnetic Recording: a magnetic storage data recording technology used to provide increased
areal density.

VFS Virtual File System: abstraction layer in Linux that provides a common interface to file systems and devices
for software.

© Copyright IBM Corp. 2021

References i

[1] J. Axboe.
Explicit block device plugging, Apr. 2011.
https://lwn.net/Articles/438256/.

[2] J. Axboe.
Efficient io with io_uring.
https://kernel.dk/io_uring.pdf, Oct. 2019.

[3] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet.
Linux block io: Introducing multi-queue ssd access on multi-core systems.
In Proceedings of the 6th International Systems and Storage Conference, SYSTOR ’13, pages 22:1–22:10, New York, NY, USA, 2013. ACM.

[4] N. Brown.
A block layer introduction part 1: the bio layer, Oct. 2017.
https://lwn.net/Articles/736534/.

[5] N. Brown.
Block layer introduction part 2: the request layer, Nov. 2017.
https://lwn.net/Articles/738449/.

[6] J. Corbet.
The bfq i/o scheduler, June 2014.
https://lwn.net/Articles/601799/.

© Copyright IBM Corp. 2021

https://lwn.net/Articles/438256/
https://kernel.dk/io_uring.pdf
https://lwn.net/Articles/736534/
https://lwn.net/Articles/738449/
https://lwn.net/Articles/601799/

References ii

[7] J. Corbet.
Block-layer i/o polling, Nov. 2015.
https://lwn.net/Articles/663879/.

[8] J. Corbet.
The return of the bfq i/o scheduler, Feb. 2016.
https://lwn.net/Articles/674308/.

[9] J. Corbet.
A way forward for bfq, Dec. 2016.
https://lwn.net/Articles/709202/.

[10] J. Corbet.
Two new block i/o schedulers for 4.12, Apr. 2017.
https://lwn.net/Articles/720675/.

[11] J. Corbet.
I/o scheduling for single-queue devices.
Oct. 2018.
https://lwn.net/Articles/767987/.

[12] J. Corbet.
Ringing in a new asynchronous i/o api, Jan. 2019.
https://lwn.net/Articles/776703/.

© Copyright IBM Corp. 2021

https://lwn.net/Articles/663879/
https://lwn.net/Articles/674308/
https://lwn.net/Articles/709202/
https://lwn.net/Articles/720675/
https://lwn.net/Articles/767987/
https://lwn.net/Articles/776703/

References iii

[13] K. Desai.
io_uring iopoll in scsi layer, Feb. 2021.
https://lore.kernel.org/linux-scsi/20210215074048.19424-1-kashyap.desai@broadcom.com/T/#.

[14] W. Fischer and G. Schönberger.
Linux storage stack diagramm, Mar. 2017.
https://www.thomas-krenn.com/de/wiki/Linux_Storage_Stack_Diagramm.

[15] E. Goggin, A. Kergon, C. Varoqui, and D. Olien.
Linux multipathing.
In Proceedings of the Linux Symposium, volume 1, pages 155–176, July 2005.
https://www.kernel.org/doc/ols/2005/ols2005v1-pages-155-176.pdf.

[16] kernel development community.
Block documentation.
https://www.kernel.org/doc/html/latest/block/index.html.

[17] M. Lei, H. Reinecke, J. Garry, and K. Desai.
blk-mq/scsi: Provide hostwide shared tags for scsi hbas, Aug. 2020.
https://lore.kernel.org/linux-scsi/1597850436-116171-1-git-send-email-john.garry@huawei.com/T/#.

[18] R. Love.
Linux Kernel Development.
Addison-Wesley Professional, 3 edition, June 2010.

© Copyright IBM Corp. 2021

https://lore.kernel.org/linux-scsi/20210215074048.19424-1-kashyap.desai@broadcom.com/T/#
https://www.thomas-krenn.com/de/wiki/Linux_Storage_Stack_Diagramm
https://www.kernel.org/doc/ols/2005/ols2005v1-pages-155-176.pdf
https://www.kernel.org/doc/html/latest/block/index.html
https://lore.kernel.org/linux-scsi/1597850436-116171-1-git-send-email-john.garry@huawei.com/T/#

References iv

[19] O. Purdila, R. Chitu, and R. Chitu.
Linux kernel labs: Block device drivers, May 2019.
https://linux-kernel-labs.github.io/refs/heads/master/labs/block_device_drivers.html.

[20] O. Sandoval.
blk-mq: abstract tag allocation out into sbitmap library, Sept. 2016.
https://lore.kernel.org/linux-block/cover.1474100040.git.osandov@fb.com/T/#.

[21] K. Ueda, J. Nomura, and M. Christie.
Request-based device-mapper multipath and dynamic load balancing.
In Proceedings of the Linux Symposium, volume 2, pages 235–244, June 2007.
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-235-244.pdf.

[22] Western Digital Corporation.
dm-zoned.
https://www.zonedstorage.io/linux/dm/#dm-zoned.

[23] Western Digital Corporation.
Zoned block device user interface.
https://www.zonedstorage.io/linux/zbd-api/.

[24] Western Digital Corporation.
Zoned storage overview.
https://www.zonedstorage.io/introduction/zoned-storage/.

© Copyright IBM Corp. 2021

https://linux-kernel-labs.github.io/refs/heads/master/labs/block_device_drivers.html
https://lore.kernel.org/linux-block/cover.1474100040.git.osandov@fb.com/T/#
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-235-244.pdf
https://www.zonedstorage.io/linux/dm/#dm-zoned
https://www.zonedstorage.io/linux/zbd-api/
https://www.zonedstorage.io/introduction/zoned-storage/

References v

[25] Western Digital Corporation.
zonefs.
https://www.zonedstorage.io/linux/fs/#zonefs.

[26] J. Xu.
dm: support polling, Mar. 2021.
https://lore.kernel.org/linux-block/20210303115740.127001-1-jefflexu@linux.alibaba.com/T/#.

© Copyright IBM Corp. 2021

https://www.zonedstorage.io/linux/fs/#zonefs
https://lore.kernel.org/linux-block/20210303115740.127001-1-jefflexu@linux.alibaba.com/T/#

	Trademark Attribution Statement
	Outline
	What is a Block Device?
	A Try at a Definition
	What is a 'Block' Anyway?
	Using Block Devices in Linux (Examples)

	Anatomy of a Block Device
	Structure of a Block Device
	Queue Limits
	Multi-Queue Request Queues
	Block MQ Tag Set: Hardware Resource Allocation
	Block MQ Soft- and Hardware-Context
	Block MQ Elevator / Scheduler
	What About Stacked Block Devices?

	I/O Flow in the Block Layer
	Submission of I/O Requests from Userspace (Simplified)
	A New Asynchronous I/O Interface: io_uring
	The I/O Unit of the Block Layer: BIO
	Plugging and Merging
	Entry Function into the Block Layer
	Request Submission and Dispatch
	Request Completion
	Block Layer Polling

	Closing
	Summary
	IBM Deutschland Research & Development

	Backup Slides
	But What About Zoned Storage?
	Structure of a Block Device: Whole Picture
	Structure of a MQ Request Queue: Whole Picture
	Glossary
	Bibliography

